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Abstract

Recently the model-independent approach to calculating a plot of scale factor a
versus lookback time tL has been developed by Ringermacher & Mead [1]. In the
present paper we compare the dependence obtained in their work with predicted ones
given by cosmological model with scalar meson field and by two-component (warm
massive fermions + cosmological constant) cosmological model. For these models
we fit cosmological parameters and estimate corresponding confidence intervals. It
was found that there exist a broad region in the parameter space of two-component
model satisfying the observed data. We also estimate the transition redshift of the
universe in the noisy a(τL)-data using anisotropic Gaussian filter on a − tL plane.
The estimated value of zt = 0.72±0.05 imposes stronger restrictions on the models’
parameters.
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1. Introduction

One of the most important task of the observable cosmology is a choice of our world
model and its support by our observations. Here we use one cosmological test for two
cosmological models. It is the cosmological scale factor as a function of cosmological time.

The outline of the paper is as follows. In Section 2, we give a brief review of cosmo-
logical model with scalar meson field and obtain the hyperbolic solution of the equation
for the scale factor. In Section 3 we do the same for the two-component cosmological
model with warm massive fermions and cosmological constant. Section 4 is dedicated to
chi-square analysis of the a(tL)-data obtained in [1] in view of estimation of cosmological
models’ parameters and corresponding confidence intervals. In Section 5 we estimate the
transition redshift of the universe with the purpose to impose stronger restrictions on the
parameters of two-component model. In Section 6 we make final conclusions and remarks.

2. The cosmological models with complex field

Let us consider a cosmological model with conformally flat space. The metric can be
written

ds2 = gmndx
mdxn = c2dt2 − a2

[

(

dx1
)2

+
(

dx2
)2

+
(

dx3
)2
]

, (1)
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where a(t) is the scale factor, and t is the cosmological time of the model.
We consider the space-time (1) which is made up of the charged scalar meson field

(complex field)
ψ = ϕ1 + iϕ2

ψψ∗ = Ψ2 = const, (2)

where the asterisk denotes complex conjugation and Ψ is the field amplitude relating to
the field charge Q−Ψ2. We choose the complex field Lagrangian

L =
1

hc

(

gmn ∂ψ

∂xm
∂ψ∗

∂xn
− U (ψψ∗)

)

+
dF

dt
,

where h is Planck’s constant, c is the light velocity, U0 is an amplitude of the field potential,
and dF/dt is a total derivative of some differentiable function.

This cosmological model was considered in papers [2, 3, 4].
The Einstein equations with the energy-momentum tensor

Tmn =
2

hc
Ψ2 ∂ϕ

∂xm
∂ϕ

∂xn
− gmn

dF

dt

lead to two equations:

3
(at
a

)2

=
2κ

hc
Ψ2

(

∂ϕ

∂t

)2

− κc2
dF

dt
,

1

c2

[

2
(at
a

)

t
+ 3

(at
a

)2
]

= −2κ

hc
Ψ2 1

a2

(

∂ϕ

∂x

)2

− κ
dF

dt
. (3)

Here the subscript t denotes differentiation in t, κ = 8πG
c4

is the Einstein gravity constant,
and we have taken into account that the solution of the equation (2) is

ψ = Ψeiϕ, ψ∗ = Ψe−iϕ,

ϕ (xm) is a field phase, and in isotropic case

∂ϕ

∂x1
=

∂ϕ

∂x2
=

∂ϕ

∂x3
=
∂ϕ

∂x
.

The Lagrange equation of the field ψ lead to two equations:

(

1

c

∂ϕ

∂t

)2

− 3

a2

(

∂ϕ

∂x

)2

= U0,

1

c2
∂2ϕ

∂t2
− 3

a2
∂2ϕ

∂x2
+

3

c2
at
a

∂ϕ

∂t
= 0. (4)

Four equations (3) and (4) lead to the equation for the scale factor:

att
a

+
(at
a

)2

=
κc

3h
U0Ψ

2 − 2κc2

3

dF

dt
. (5)
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Using the notations of Hubble constant H = at/a and the deceleration parameter q =
−atta/a2t one can rewrite last equation in a form

H2(1− q) =
κc

3h
U0Ψ

2 − 2κc2

3

dF

dt
. (5′)

In the hyperbolic case (corresponding to L = 0, dF/dt = 0) the right-hand side of the
equation (5) is a constant, so the left-hand side remains constant, too. One can deter-
mine the value of it through the current values of Hubble constant and the deceleration
parameter

κc

3h
U0Ψ

2 = H2
0 (1− q0) > 0.

The hyperbolic solution of the equation (5) takes the form

a = a∗

√

sinh

(

t

t∗
+ φ

)

, (6)

where

a∗ = a0

(

1 + q0
1− q0

)1/4

,

t∗ =
H−1

0
√

2(1− q0)
,

φ =
1

2
ln

(√
2 +

√
1− q0√

2−√
1− q0

)

− t0
t∗
.

The solution (6) is singular at time t = −t∗φ. If we put it equal to zero, the current time
will be equal to the age of the universe in our model

t0 =
1

2
ln

(√
2 +

√
1− q0√

2−√
1− q0

)

t∗.

The solution (6) also contains the inflexion point, which corresponds to transition to
an accelerating regime of the model’s expansion. It localized at

tt =
(

ln(1 +
√
2)− φ

)

t∗. (7)

Thus we can see that the hyperbolic solution of equation (5) qualitatively reflects our
state of knowledge on the history of cosmological expansion. In sections 4 and 5 we will
make qualitative comparison of it with the empirical a(t) dependency obtained in [1].

3. The two-component cosmological model with warm massive fermions and

cosmological constant
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We now consider a two-component model in a flat space-time with metrics (1) filled with
the gas of free massive particles and dark energy in the form of cosmological constant.
The energy-density tensor for free particles has the form [5, 6]

(T i
k)ν = c

∫

pipk
p0

f(xi, pα)
√
−gd3p,

where g = |gik|, f(xi, pα) is the single-particle distribution function depending on 4-
coordinates and 3-momenta (pipi = (mνc)

2). The function f is normalized by the condi-
tion (T 0

0 )ν = εν for the energy-density of the gas. As the model expands its dependence
on momenta remains unchangeable. For massive neutrinos that become free before the
derelativization epoch the distribution function is

f(q) =
f ∗

ecq/θ0a0 + 1

where θ0 is a temperature parameter, q2 = qαqα, q
α are components of conformal momen-

tum (pα = qα/a2) and

f ∗ =
ε0ν
4πc

(

c

θ0

)2
(

∫

∞

0

√

u2 + γ2ν
eu + 1

u2du

)−1

,

γν = mνc
2/θ0. The expansion of the model is governed by the equation for the scale factor

H2 =
(at
a

)2

= H2
0

(

ΩM

(a0
a

)4 I1(γν , a/a0)

I1(γν , 1)
+ ΩΛ

)

(8)

where

I1(γν , x) =

∫

∞

0

√

u2 + (γνx)2

eu + 1
u2du, (9)

the quantities ΩM = (8πG/3H2
0c

2)ε0ν , ΩΛ = c2Λ/3H2
0 are the cosmological densities of

the neutrino gas and dark energy, ε0ν and Λc4/8πG are the energy densities of neutrinos
and dark energy, respectively. For flat universe ΩM + ΩΛ = 1. From (8) one can obtain

t =
1

H0

∫ a/a0

0

dx

x
√

ΩM
I1(γν ,x)
I1(γν ,1)

x−4 + ΩΛ

. (10)

It easily can be seen that if γν → ∞ (θ0 → 0) the ratio I1(γν, a/a0)/I1(γν , 1) → a/a0
and the model tend to standard ΛCDM case

tΛCDM =
1

H0

∫ a/a0

0

dx

x
√
ΩMx−3 + ΩΛ

. (11)

4. Fitting cosmological parameters
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In this section we compare theoretical predictions on a(t) dependency given by two above
mentioned models with the model-independent results obtained by Ringermacher & Mead
[1]. They utilized the Hubble diagram data for more then 500 standard candles (SNe
+ radio-galaxies) up to z = 1.8 to perform a robust numerical integration leading to
dimensionless lookback time1

τL ≡ H0(t0 − t) = −
∫ 0

y

a

a0
dy, (12)

where t0 = t(a = a0) is the cosmic time, y = aDL/DH is a dimensionless coordinate
distance, DH = c/H0, a/a0 = (1+ z)−1, z is a standard candle’s redshift. The luminosity
distance DL is related to standard candle’s modulus µ = m−M⊙ = 5 lgDL(Mpc) + 25.

To perform the estimation of models’ parameters and goodness-of-fit we calculate the
log-likelihood function

logL(ω) ∝ −1

2

N
∑

i=1

(

ai − a(τLi|ω)
σi

)2

,

where ω denotes the parameter space of a model. For model with complex field ω = {q0},
and for two-component model ω = {ΩM , γν}. Unfortunately, individual errors σi are
not known in advance because observers often do not provide a classical error estimation
due to spurious problems such as SN misclassification, uncertain extragalactic extinction
laws, poorly constrained colors, etc (see e.g. [7]). To reflect the differences in quality
of the observational material the objects are often only divided into ”gold” and ”silver”
subsets. Moreover, the error is accumulating during the process of numerical integration
in (12): the error grows towards earlier times with some rough law. As such a law
we choose a second order polynomial with respect to τL, approximating the absolute
deviations of empirical points from the best-fitting ΛCDM model with parameters ΩΛ =
0.735 and ΩM = 0.265 [1]. Obviously, this approach prohibits an independent assessment
of goodness-of-fit [8].

In the table 1 we give the best-fit parameters for our models.

Table 1: Best-fit models’ parameters

Meson scalar field q0 = 0.72± 0.015
Neutrino + cosmological constant γν = 15, ΩM = 0.26

5. Estimating transition redshift

1The authors of the original paper [1] actually calculate different quantity with the same notation

τL = 1−
∫

0

y
a
a0

dy, but it is not equal to H0t in our notation, because the dimensionless cosmic time H0t0
is not necessarily equal to 1.
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Figure 1: The log-likelihood function for the model with scalar meson field
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Figure 2: The log-likelihood function for the two-component model
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Figure 3: The best-fit a(tL) dependencies for different models

As we can see there is a broad region in the two-component model’s parameter space
satisfying the observed data in a least-squares sense. In this Section we are trying to
impose stronger restrictions on the parameters of our models localizing the transition
redshift zt which corresponds to the position of inflexion point on the a(t) plot.

For the model with scalar field the location of zt uniquely defines the parameter q0

q0(zt) =
1− (zt + 1)4

1 + (zt + 1)4
.

For the two-component model it defines a subset of possible solutions, lying on a curve

ΩM (γν |zt) =
(

(1 + zt)
4 I1 (γν , (1 + zt)

−1)

I1 (γν , 1)
− 1

2
(1 + zt)

I2 (γν , (1 + zt)
−1)

I1 (γν , 1)
+ 1

)−1

,

where

I2(γν , x) ≡
∂I1
∂γν

= xγ2ν

∫

∞

0

u2du

(eu + 1)
√

u2 + (γνx)2
.

The problem of searching of inflexion points in noisy data is widely known. Never-
theless there is no method, that can guarantee an adequate result. Among sophisticated
methods there are applications of wavelet analysis, Gaussian process regression (krig-
ing) [8], radial basis function networks, anisotropic Gaussian filtering, etc. After some
experiments with the data we have chosen the last one.
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6. Conclusions

In the present paper we have compared the empirical a(t) dependency obtained in the
work [1] with predicted dependencies given by cosmological model with scalar meson field
and by two-component cosmological model with massive fermions and dark energy in a
form of cosmological constant. Both of the models have a unique inflexion point. So, this
models qualitatively agree with modern views on expansion history. For these models
we have chosen the best-fit parameters. The model with scalar meson field has shown
a significant correspondence to the observational data. In the case with two-component
model we have found that there exist a broad region in the parameter space of this model
satisfying the observational data in a least-squares sense. We also have estimated the
transition redshift of the universe in the noisy a(τL)-data using anisotropic Gaussian filter
on a− tL plane. The estimated value of zt = 0.72± 0.05 imposes stronger restrictions on
the cosmological parameters.
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